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A Method of Computing Exact Inverses of Matrices
With Integer Coefficients1

J. Barkley Rosser5

In theory, the problem of computing the exact inverse of a matrix A with integer co-
efficients is completely solved by solving exactly the simultaneous equations Ax=y, in which
both x and y are variable vectors. This solution can be carried out by any one of numerous
well-known procedures, resulting in expressions for the components of x as linear combina-
tions of the components of y. The coefficients of these linear combinations are just the
components of A~l because we have x = A~ly.

In actual practice, if the order of A is at all large, the exact components of A~l will be
fractions whose numerator and denominator each have a large number of digits, and the
usual methods of solution become extremely laborious due to the necessity for carrying an
even larger number of significant digits throughout most of the computation. In the method
presented herein, the number of significant digits involved builds up gradually, and only the
final stages of the computation involve a large number of digits. Moreover, the method
can be readily adapted to use on IBM equipment, and so all but the final stages (in which
many significant digits must be carried) can be readily mechanized.

1. Illustration of a Solution by Previous Methods

Suppose we require the exact inverse of

152

103

72

157

34

191

-128

-89

195

-192

190

77

183

156

75

-37

-120

-154

83

-91

113

-138

102

117

— 141

135

-187

71

37

-131

-27

-96

178

-179

65

-112

To invert this, we write

152*i-128*2 + 183*3 + 83* 4 -141* 5 - 27*6=2/i

103*1- 89*2+156*3- 91*4+135*5- 96*6=?/2

72*i +195*2+ 75*3 + 113*4-187*5 +178*6=2/3

157*i-192*2- 37*3-138*4+ 71x5-179x6=y4

34*1 + 190*2-120*3+102*4+ 37*5+ 65*6=?/5

191*i+ 77*2-154*3+117*4-131*5-112*6=?/6.

Eliminating X\ from the last five of these by use of eq 1 gives

344*2- 4863*3 + 22381*4-35043*5+11811*6= 1031/1-152?/2

-4857*2+ 222*3- 1400*4+ 2284*5- 3625*6= 9?/i- 19i/3

9088*2 + 34355*3 + 34007*4-32929*5 + 22969*6= 157?/i-152?/4

-16616*2 + 12231*3- 6341*4- 5209*5- 5399*6= \7yx- 76y5

-36152*2 + 58361*3- 1931*4- 7019*5 + 11867*6=191?/i—

(1)

(2)

1 The preparation of this paper was sponsored (in part) by the Office of Naval Research.
2 National Bureau of Standards and University of California at Los Angeles.
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The multipliers that were used in eliminating xx are apparent from the coefficients of the
2/'s on the right sides of the reduced equations.

We now use eq 2 to eliminate x2 from the four equations that follow it. The multipliers
we use for eq 2 are, respectively, 4857, 1136, 2077, and 4519. We get

- 2 3 5 43223*3+1082 22917*4-1694 18155*5+561 19027*6=5 03367?/i-7 382642/2-65362/3 (3)

- 7 0 01633*3+ 239 62515*4- 383 92901*5+124 29629*6=1 102572/1-1 72672?/2 + 6536?/4

- 9 5 74518*3+ 462 12674*4- 730 08298*5 + 242 99290*6=2 14662^-3 15704^-3268?/5

- 1 9 4 66374*3+1010 56706*4-1586 61134*5 + 538 84190*6 = 4 73670?/i-6 868881/2-65362/6.

We now use eq 3 to eliminate xB from the three equations that follow it. The multipliers
we use for eq 3 are, respectively, 3 68507, 1 67974, and 10 24546. We get

1018 85427 75664*4-1485 84797 36168*5 + 527 84896 85096*6=4 88729 40000?/!
- 5 80946 41224?/2-24085 61752^-80988 687122/4 (4)

- 9 0 90003 96128*4+ 169 74292 29652*5- 61 00170 01012*6= -41112 093602/1
+ 63889 073202/2-10978 78064i/3+13498 lUb2y-0

-1434 17256 47920*4 + 2302 30153 46048*5-927 22912 23488*6= - 7 12099 O3OO82/i
+ 9 47491 69752^-66964 32656^ + 80988 68712?/6.

We now use eq 4 to eliminate #4 from the two equations that follow it. The multipliers
we use for eq 4 are, respectively, 63 21634 and 997 39385. We get

26343 37340 69713 22772*5-9854 75613 37432 23540*6=17 65250 77603 04880?/i + 85 44010 53886 36424?/2
- 9 3 01742 24170 60256^-51 19808 38113 154082/4 + 95 64239 81708 51884^, (5)

1 49345 83813 20139 98936*5-1 30525 23686 92201 70136*6= - 1 7 1 10024 03515 99936yi
+919 23447 01231 65744?/2-7l4 71168 36351 59272^-807 77618 45306 22120^ + 573 85438 90251 HS04y6.

We now use eq 5 to eliminate a?fl from the equation that follows it. The multiplier we use
for eq 5 is 13 52291 10622. We get

1 78080 76167 83302 24294 95529 75104*6=646 84381 45668 50109 91756 885442/1
-1037 27853 59149 81148 61699 71008^ + 446 95683 03519 19158 33166 05736^
+ 1234 46556 51847 48058 62839 54504^+1293 36364 42399 49987 74131 118482/5
-1368 83204 20859 69018 78357 063762/6. (6)

Dividing this through by the common factor 191 28479 63417 03768, we get

930 97185 49728*6=3 38157 463082/1-5 42269 20056?/2 + 2 33660 40527^ + 6 45354 77403^ + 6 76145 553112/5
- 7 15598 975072/6. (7)

Substituting this back into eq 5, 4, 3, 2, and 1, we get

930 97185 49728*5= 1 88884 62I8O2/1+ 99087 636562/2-2 41312 S2729y3

+ 60486 42243i/4 + 5 90937 515112/5-2 67697 43115t/6,

930 97185 49728*4= 5 46840 792482/1-1 05392 261922/2-4 94982 O818O2/3
- 3 20138 433002/4 + 5 11496 676282/5- 19658 851322/6,

930 97185 49728*3= - 29934 797282/1 + 4 29235 116322/2+ 43989 177642/3
- 3 68561 737082/4-2 89478 234842/5+l 30251 85404!/6

930 97185 49728* 2=-4 95059 837642/1 + 5 01313 851442/2 + 2 21002 587972/3
- 3 77781 957272/4-3 87417 307072/5+4 19819 570792/e

930 97185 49728*i= 1 68307 8 3 9 3 6 ^ - 41475 047522/2 + 2 21089 12S92y3

+ 4 71153 69576i/4 + 4 11243 402002/5-l 67986 905842/6

From these results one can easily write down A"1.
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We hardly need to stress the fact that the procedure outlined above is not a really prac-
ticable method to find A"1. In the present case, we did carry the computation through to the
bitter end, just to show how unwieldy it becomes, but it required 38 hours of computing time
by a trained professional computer. We might note further that the computation would
have been even more unwieldy and extensive if we had not deviated from a strict mechanical
procedure by removing common factors from our multipliers when combining equations.
Precisely, what we did do in this direction is described below.

In general, if we wish to eliminate Xi from two equations axt+ . . ., bxt-\- . . ., the
mechanical way to proceed is to multiply the first equation by ft and the second equation by
—a, and add. However, in ord6r to mitigate somewhat the frightful increase in the sizes of
the coefficients in the later stages of the process, we have in every such step of the present com-
putation determined the greatest common factor, c, of a and ft, and have multiplied the first
equation by b/c and the second by —- (a/c), and added. For example, in the case of eliminating
x5 from eq 5 and the equation following it, a is a 20-digit number and 6 is a 21-digit number.
However, the common factor, c, is a 10-digit number, so that our multipliers, b/c and —(flic),
are 12- and 11-digit numbers, respectively. If we had used ft and —a as multipliers, the coeffi-
cients in eq 6 would each have had about nine more digits.

Similarly, in the multipliers used with eq 4, a six-digit factor was removed, and in the
multipliers used with eq 3 a two-digit factor was removed. Without such removal of factors,
the coefficients of eq 6 would each have had about 15 more digits, so that it is doubtless worth
while to carry out such a determination of common factors. Nevertheless, this portion of
the computation can be quite a chore, especially when (as in the present case) the greatest
common factor of a 20-digit number and a 21-digit number is required. Also, if determination
of common factors is carried out, mechanization of the process is more much difficult.

One could effect a further saving in the number of digits carried by extracting common
factors from each of the equations derived in the course of the computation, instead of only
from eq 6. However, this entails a great increase in labor with only a moderate decrease in
the number of digits in the various equations. In the present case, if all possible common
factors would be extracted from previous equations, one would still obtain as the equation
corresponding to eq 6 an equation with a 23-digit coefficient for <r6, and there would be much
additional labor in the determination and extraction of common factors.

2. A New Method of Solution

We treat the same matrix A as in the previous section. If G is the inverse of A, then OA
is the unit matrix. To find G, we find in succession B, C, D, E, and F with the properties
that BA has its first column the same as the unit matrix, CA has its first two columns the
same as the unit matrix, DA has its first three columns the same as the unit matrix, and so on
up to GA, which has all its columns the same as the unit matrix.

Our method for finding B,C, . . ., G is a modification of the algorithm set forth in a
previous note.3 In addition, we use the following well-known property of matrix multiplication.
If W and V are matrices with WA= V, then if we form W* and V* from W and V by performing
the same elementary transformation on the rows of each, we will have W*A=V*. By an
elementary transformation on the rows, we mean one of (a) Multiplying the ith. row by a
constant a. (b) Interchanging the ith and jth rows, (c) Adding a times the ith row to the
jth row.

By a sequence of such transformations, we can reduce V to the unit matrix, and so the
same sequence of transformations performed on W will reduce it to A~l. This fact is the basis
of various methods for computing A'1. The novelty in our method lies in the fact that we
are able to use mainly transformation (c) with an occasional transformation (b) until the final
stage of the reduction, and also that we have a mechanical procedure for keeping the sizes of
the numbers small until the final stages of the reduction.

3 J. Barkley Rosser, A note on the linear Diophantine equation, Am. Math. Mo., 48 662 (1941).
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As indicated earlier, we carry out the reductions on V in a certain order. First we reduce
the first column of V to be the first column of the unit matrix. Then W has been reduced
to the B mentioned earlier. Then, restricting ourselves to transformations that leave the
first column of V unchanged, we reduce the second column to be the second column of the unit
matrix. Then TFhas been reduced to the C mentioned earlier. Proceeding in this way, column
by column, we eventually reduce V to / and W to A~l.

To get started, let us take W to be the unit matrix, / . Then V is A. We first seek trans-
formations that will bring the first column of V to the desired form. So we temporarily ignore
all other columns of V, and consider only the first column, which is (I). This is to be reduced
to form (II).

(I) (ID
152

103

72

157

34

191

1

0

0

0

0

0

One can do this in many ways, but we follow the way that is proposed in the note referred to
in footnote 3, since this is quite mechanical but keeps the sizes of the numbers involved rea-
sonably small. Specifically, we apply the elementary transformation (c) to those two rows
containing the two numbers of maximum absolute value. Thus we first add —1 times the
fourth row to the sixth, getting (III). Then we add —1 times the first row to the fourth,
getting (IV). Then we add —1 times the second row to the first, getting (V).

(Ill)

152

103

72

157

34

34

(IV)

152

103

72

5

34

34

(V)

49

103

72

5

34

34

Clearly, if we were trying to reduce the sizes of the numbers as rapidly as possible, we would
now add —2 times the first row to the second. However, this presupposes that good judg-
ment is to be applied at the various steps. One of the advantages of the procedure we are
describing is that it gives quite good results even when applied quite mechanically. To
illustrate, we ignore the smart transformation, and proceed according to rule, adding —1
times the ith row to the jth for the following values of i and j :

3

2

1

3

5

1

5

~^~

2

5

3

2

1

3

2

1

2

3

1

2

4

1

5

4

1

5

We then have

1

0

0
1

0
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We now have a situation that occasionally arises, in which the largest number is at least twice
as great as the next largest. In such case, our multiplier can conveniently be different from
the —1 used uniformly so far. Thus we could conclude by adding — 2 times the second row
to the first, then —1 times the second row to the fifth, and, finally, by interchanging the first
and second rows. However, we could equally well continue mechanically, since exactly the
same result would ensue if we twice add — 1 times the second row to the first row, and then
add — 1 times the second row to the fifth, and, finally, interchange the first and second rows.

Applying the transformations listed to the unit matrix transforms it into B, which is

1 1 - 4 0 1 0

- 1 - 3 10 - 1 - 3 0

- 3 2 3 0 1 0

- 2 2 - 3 2 0 . 0

- 2 - 1 3 1 1 0

0 0 0 - 1 - 1 1

and has the property that the first column of BA is the same as the first column of the unit
matrix. Moreover, the coefficients of B are quite small, which is why there is little increase
in the sizes of our numbers as yet.

We now seek to bring the second column of BA into agreement with the second column of
the unit matrix by means of elementary transformations. In order not to change the form of the
first column, we must avoid the following transformations: (a) Multiplying the first row b}̂
a constant different from unity; (b) interchanging the first and jth rows; (c) adding a times the
first row to the jth row for a 5*0.

However, the remaining transformations are quite adequate to effect the desired reduction.
The second column of BA is

- 8 0 7

1967

981

- 8 9 1

928

79

Confining attention to this column only, we see that the following sequence of transformations
is called for. We add a times the ith row to the jth row for the following succession of a, i, and j :

a - 2 - l +1 - l 11 - l - l - l - l +1 +1 - l +1 +1 - l - l - l - l 4 +1

6

J 2 3 5 1 4 1 6 3 5 6 4 3

Performing these transformations on B gives C, namely,

2 6

- 2

6

3

12

- 9 ~

23

6

- 6

5

- 9

15

- 1 3

- 5

7

- 4

8

- 7

1

0

8

- 6

- 6

g

- 6 5

7

7

2

- 1 0

- 5

- 8 0

- 1

- 1 2

1

- 1

10

56
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The first two columns of CA are identical with those of the unit matrix. The third column is

-491

1399

857

2968

-439

5637

In dealing with this, we must now curtail transformations on the first two rows. Nevertheless,
we can reduce it to the desired form by adding a times the ith. row to the jt\i row for the follow-
ing succession of a, i, and j :

OL

i

.7

- 1

4

6

- 1

6

4

- 1

3

2

- 3

3

6

+ 1

5

3

+ 1

5

2

- 1

5

1

+ 1

3

5

- 1

4

3

- 2

3

4

- 1

6

3

- 1

6

2

- 1

4

6

+ 1
4

1

- 1

6

4

- 1

4

6

- 1

3

4

+ 1
3

5

- 1

6

3

- 1

3

6

-j

3

1

- 1

6

3

- 1

6

2

- 1

3

6

- 1

3

4

- 1

6

3

- 1

3

1

2

3

6

Performing these transformations on C gives D, namely,

-293 815 -1464 -5481 -6270 5967

65 -187 350 1317 1509 -1434

283 -796 1373 5057 5745 -5493

-68 158 -351 -1447 -1721 1597

-24 79 -49 -51 36

-744 2095 -3608 -13278 -15079 14421

The first three columns of DA are identical with those of the unit matrix. The fourth
column is

5 51061

- 1 33644

- 5 03483

1 51308

-2958

13 21462

In dealing with this, we must now curtail transformations on the first three rows. Nevertheless,
we can start out to reduce it to the desired form by adding a times the ith row to the jth row for
the following succession of a, i, and j :

a

i

3

- 1

6

3

+ 2

5

6

+ 1
4

5

- 3

6

4

- 1

6

3

- 1

6

1

+ 1
6

2

+ 1

5

6

+ 1

5

3

+ 1
4

5

- 1

4

1

+ 1
4

2

- 1

6

4

+ 1

5

6

+ 1
4

5

- 3

6

4

+ 1

6

1

- 2

6

2

+ 1

6

3

+ 2

5

6

a

i

j

- 8

4

6

- 3

4

1

+ 3
4

3

+ 1
4

2

- 1

6

4

- 1

6

• 1

- 2

4

6

+ 1
4

3

- 1

6

4

- 3

4

6

+ 1
4

1

- 2

4

2

+ 1
4

3

+ 3

5

4

- 1

5

1

- 1

5
2

+ 2
4

5

+ 1
4

1

+ 1

5

4

+ 1

5

2

+ 1

6

5
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We now have the fourth column reduced to

i

0

- 1

0

- 2

0

We cannot reduce the —2 in the fifth row to unity except by dividing by 2, which would intro-
duce fractions. We would prefer to delay the introduction of fractions until the last possible
moment. Accordingly, we multiply the first and third rows by 2, then subtract the fifth row
from the first and third, then multiply the fifth row by —1, and, finally, interchange the fourth
and fifth rows.

We have now changed the first and third columns so that they are no longer the first and
third columns of the unit matrix, but have a 2 where the unit matrix has a unity. Also our
fourth column has the same property. This can readily be corrected by multiplying the appro-
priate rows by one-half, but we will postpone this step until we can no longer avoid fractions.

Performing the indicated transformations on D gives the matrix

32262

12391

3330

36052

14752

83708

147945

60699

-20337

168729

74554

-393352

-111285

-46328

16173

-127507

-57273

297521

-133369

-54117

17547

-151577

-66137

353125

-13466

-3115

-1298

-13242

-2494

29905

99868

39630

-11972

112718

47933

-262237

This is not exactly the matrix E as we defined it earlier, but is close enough so that we shall
call it E. The first four columns of EA are essentially the first four columns of the unit matrix,
merely having 2 in place of unity in the first, third, and fourth columns. The fifth column
of EA is

222 81663

94 55740

- 3 4 73233

256 87577

117 87645

- 6 0 0 10368

We now reduce this by adding a times the ith. row to the jth row for the following succession
of a, i, and j :

a

i

j

+ 5

5

6

- 2

5

4

- 2

5

1

- 1

5

2

+ 11

6

5

- 3

6

3

- 2

6

2

+ 2
6

4

- 1

6

1

-181

5

6

- 4 3

5

3

- 3 7
K

1

- 3 2

5

2

0

5

4

3

6

1

- 3

6

2

a

i

5

+ 2
6

3

5

5

6

- 2

5

2

+ 2
5

1

- 2

5

3

+ 1
5

4

2 I 1

5 I 2

- 1

6

3

+ 1
5

6

- 1

5

4

- 1

5

2

+ 1
6

5

- 1

6

1

+ 4
5

6

- 1

5

1

+ 2
6

5

+ 1
6

3

+ 1
6

4
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We now multiply the second, third, and fourth rows by 3, then add —1 times the sixth
row to the second and + 1 times the sixth row to the third and fourth. Finally, we interchange
the fifth and sixth rows.

We could perform these transformations directly on E to get a matrix that we will call F.
However, it is computationally easier to proceed as follows. We perform the transformations
on the unit matrix, getting the matrix.

1 0 0 0 29 53877 5 80221

0 3 0 0 108 36604 21 28600

0 0 3 0 - 3 4 6 28689 - 6 8 02003

0 0 0 3 - 3 3 9 84487 - 6 6 75463

0 0 0 0 - 9 0 19777 - 1 7 71726

0 0 0 0 - 2 0 0 03456 - 3 9 29215

Then, if we multiply E on the left by the matrix above, we get the same matrix F that we
would get by performing the indicated transformations on the rows of E. This matrix F
follows.

49935 13702 -80075 96989 34504 23435

1 83192 29419 - 2 93767 10487 1 26582 40724

- 5 85396 37006 9 38741 43339 - 4 04497 80947

- 5 74506 12736 9 21277 84365 - 3 96972 85793

- 1 52478 89704 2 44515 11094 - 1 05360 03125

- 3 38157 46308 5 42269 20056 - 2 33660 40527

The matrix FA is

2 0 0 0 0

0 3 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 3

0 0 0 0 0

95298 44107

3 49612 33901

- 1 1 17196 52341

- 1 0 96413 09887

- 2 90997 52301

- 6 45354 77403

137 47502 92848

504 34158 21303

-1611 63837 57000

-1581 65675 30712

- 419 78538 73419

- 9 3 0 97185 49728

99845 26301

3 66292 83279

- 1 1 70499 53243

- 1 1 48724 50163

- 3 04881 42192

- 6 76145 55311

- 1 05671 28268

- 3 87666 19778

12 38798 74958

12 15753 13514

3 22671 40121

7 15598 97507

At this point, we can read off the determinant of A. Most of the transformations that we
used in forming F are such as to leave the determinant unchanged. Compiling those that do
change the determinant, we find that the determinant of F is 108. So the determinant of A is
—5585 83112 98368.

One can readily write down the inverse of FA, namely, a matrix whose components are
fractions with the common denominator 930 97185 49728 and the following numerators

0 68 73751 46424

0 168 11386 07101

0 - 2 6 8 60639 59500

0 - 2 6 3 60945 88452

310 32395 16576 - 1 3 9 92846 24473

0 - 1

465 48592 74864

0

0

0

0

0

0

310 32395 16576

0

0

0

0

0

0

155 16197 58288

0

0

0

0

0

0

155 16197 58288

0

0
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Finally, we compute A 1 from the equation A~1=(FA)~1F. This gives the same matrix for
.A)"1 that was computed in section 1.

The computations outlined in section 2 required 23 hours of computing time by a pro-
fessional computer. This time included the time needed to train the computer in the unfamiliar
method.

3. Remarks on Computational Details

One advantage of the procedure outlined in section 2 is the ease in making numerical
checks. Since all the operations are on rows, one can easily carry an extra check column
which is the sum of all the columns with which one is dealing. However, this is not needed,
for other checks are possible, as follows. The computation of B is easily checked by computing
the first column of BA and seeing if it agrees with the first column of the unit matrix. Then
one can check C by computing the first two columns of CA and seeing if they agree with the
first two columns of the unit matrix; and so on.

Not only does this furnish a convenient check, but when a check is not forthcoming, one
can often find the error by this method. For example, in computing E, two mistakes were
made, and the resulting matrix was

-32262 1 47945 -1 11285 -1 32919 -13466 99868

12391

3330

36052

14752

83708

60699

-20337

1 68729

74554

- 3 93352

-46328

16173

- 1 27507

-57273

2 97521

-54117

17997

-1 51127

-66587

3 52225

-3115

-1298

-13242

-2494

29905

-

1

2

38872

11972

12718

47933

62237

which differs from E in most elements of the fourth column (where the original error had snow-
balled) and in the second element of the sixth column. When we multiplied this matrix on the
right by A, we got

70652

- 1 44778

70650

70650

-70650

- 1 41300

as the first column, instead of twice the first column of the unit matrix. So, except for the
second row, our errors are all multiples of 70650, which is (450) X (157). As 157 is the fourth
element in the first column of A, it seems clear that there are errors in the fourth column of
what purports to be E, and that these errors are multiples of 450. With this information, the
mistake in computing in the fourth column was quickly discovered and eliminated. Now
multiplication on the right by A verified all but the second row, and a trivial amount of detec-
tive work on the second row of the product sufficed to locate the error in the second row and
give its magnitude.

In setting up the computation for use on IBM machinery, we notice that the majority
of the steps consist of adding a times a row vector to another row vector, and that commonly
a is a small integer. It is not difficult to wire a multiplier so that if we insert a deck with a
card containing a followed by cards with the components of the two vectors interleaved, the
multiplier will punch cards with the components of the resulting vector. At various stages
in the procedure, some columns are computed for the product of two matrices, of which the
first has as rows the row vectors that we are manipulating, and of which the second is always A.
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Such a matrix multiplication can also be wired up for the multiplier. After the matrix multi-
plication, one then makes a list of a's and rows to be operated on by inspection from a column.
This is most conveniently done by hand, which permits the exercise of judgment at this point.
However, one can proceed perfectly mechanically, as we did in the illustrative example. In-
deed, it is not clear that one can really do much better by exercising judgment than we did
with our purely mechanical procedure. Once the list of a's and rows to be operated on is
compiled, the respective operations can be quickly performed on IBM machinery. With
only a multiplier, one must keep each row as a deck, and the row decks have to be interleaved
and separated repeatedly. If a card programmed calculator is available, one may put an
entire row on a single card (unless the matrix is of really high order) and the operations are
greatly speeded.

The matrix A that we used was constructed from a table of random numbers in an effort
to furnish an example that might be considered typical.

With an increase in the order of the matrix to be inverted, the method presented herein
becomes even more of an improvement over the standard methods. The method was first
devised in the summer of 1948 while working with Dr. N. G. Gunderson at Cornell University
on a problem in number theory, in which we required the exact solution of 15 equations in 16
unknowns (one unknown was transposed to the right-hand side, and a solution obtained in
terms of it). Fortunately, many of the coefficients were zeros. Even so, the usual methods
of solution led us to hopelessly large numbers, whereas a solution was carried out by the method
of this paper without encountering any integer of more than 12 digits.

Some of the procedural details of the present method were devised by Dr. Gunderson.
The computations for the present paper were carried out by Lillian Forthal, Nancy Mann,
and Gerald Kimble, under the direction of Marvin Howard.

Los ANGELES, August 14, 1950.
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